Kevin Brodsky
ARM

Linux Plumbers Conference — Andro
November 3, 2016

Non-Confidential © ARM 2016

Outline

The vDSO
What is a vDSO?
“Virtual” syscalls
Why a DSO?

Implementation and plumbing
Kernel and userspace setup
Anatomy of the vDSO on armé64

Adding a 32-bit vDSO to arm64
Compat processes and vDSO
Main parts of the 32-bit vDSO implementation
Problems and solutions
Some figures

Conclusion

2/21 Non-Confidential © ARM 2016

ARM

The vDSO

3/21 Non-Confidential © ARM 2016 ARM

What is a vDSO?

vDSO: virtual DSO (Dynamic Shared Object)

A full-blown DSO (shared library), provided by the kernel
= Mapped by the kernel into all user processes

= Linked like a normal .so shared library

= The one gdb used to complain about! (warning: Could not load shared library symbols for linux-vdso.so.1)

= Mainly meant for providing “syscalls in userspace” (virtual syscalls)

4/21 Non-Confidential © ARM 2016 ARM

“Virtual” syscalls

It's all about speed!

= Certain syscalls are fast to process and the syscall itself

(kernel enter/exit) is a significant overhead Not doing a syscall

) . o would be beneficial
= Certain syscalls do not require much privilege to process

= Solution: provide some code to userspace that “emulates” the syscall

= Possibly using some data made available by the kernel
= Outside of the kernel, but strongly tied to it

= Typical candidates: time-related syscalls

= For instance, a “virtual” gettimeofday() can be up to 10 times faster than the normal syscall'

5/21 Non-Confidential © ARM 2016 ARM

Why a DSO?

A significant improvement over the old vsyscall page:

= More flexible: no fixed offset within the vDSO

= Cleaner: appears like a regular library to userspace
—> improved debugging

= Harder to exploit: takes advantage of ASLR

Now included in most major architectures,
deprecating (or completely replacing) the vsyscall page

6/21 Non-Confidential © ARM 2016

vsyscall by arch
x86_64 2.5.6
i386 2.5.53

vDSO by arch

ppc64 2.6.12
i386 2.6.18
x86_64 2.6.23
mips 2.6.34
arm64 3.7
arm 4.1

2002
2002

2005
2006
2007
2010
2012
2015

[Initial arch impl.]

[Initial arch impl.]

ARM

Implementation and plumbing

ARM

Kernel and userspace setup

execve()

= Maps vDSO pages (code + data)
= Sets AT _SYSINFO EHDR in the auxiliary vector

USERSPACE

~-

Dynamic linker EEBH

8/21 Non-Confidential © ARM 2016

= Looks up AT_SYSINFO_EHDR in the auxiliary vector
= If set, links the vDSO (— [vdso])

= Looks up function symbols (e.g. _ vdso_gettimeofday)

in [vdso] i
= If found, sets global function pointers i

Anatomy of the vDSO on armé4

I
USERSPACE | KERNEL
|

[vvar] vdso_data

AT SYSINFO EHDR ——
__kernel_gettimeofday()
__kernel_clock_gettime()

[vdso]

__kernel_clock_getres()

__kernel_rt_sigreturn()

9/21 Non-Confidential © ARM 2016

ARM

Anatomy of the vDSO on armé4

I))
USERSPACE | KERNEL timekeeping_update()
Read . Write I

4

Function call Syscall
—

~

update vsyscall()
update vsyscall tz()

vdso_data

settimeofday()

(SRS UECEMORE ey kernel gettimeofday() ======z=p> sys gettimeofday()
clock_gettime() ————— G [B oY) (@ [S 0 AO = = = = = = =) sys_clock_gettime()

ISRy Y kernel _clock getres() zzz=zzz=> sys clock getres()

[HEGEIGER SN REeeeeee s - kernel rt sigreturn() —————— sys_rt_sigreturn()

10/21 Non-Confidential © ARM 2016 ARM

Adding a 32-bit vDSO to armé4

]]]]]]]] -Confidential © ARM 2016 ARM

Compat processes and vDSO

= COMPAT: running 32-bit processes under a 64-bit kernel

= Present on x86, arm64, mips, powerpc, ...
= Requires dedicated vDSO support

= Present on x86, mips, powerpc, ... but not arm64

= Partly due to arm only having a vDSO since 4.1 (glibc support only added in 2.22)
= Why bother about the performance of 32-bit processes on armé4?

= Very little use on armé4 servers, but...

= Still widespread on Android (apps shipped with 32-bit libraries)
= arm64 Chromebooks run a fully 32-bit userspace (for now)
= Vendors started implementing their own 32-bit vDSO!

— There is a need for a 32-bit vDSO on arm64

12/21 Non-Confidential © ARM 2016

ARM

Main parts of the 32-bit vDSO implementation

[All paths are relative to arch/arm64]

= The 32-bit vDSO (userspace library) itself

kernel/vdso32/vgettimeofday.c Time-related syscalls (gettimeofday() and clock_gettime())
kernel/vdso32/sigreturn.S sigreturn trampolines

* Install the vDSO mappings in compat user processes (and set mm->context.vdso)

kernel/vdso.c aarch32 setup additional pages()

= Tell fs/compat binfmt elf.c to set AT SYSINFO EHDR
include/asm/elf.h COMPAT_ARCH_DLINFO: AT_SYSINFO_EHDR = mm->context.vdso

= Use the sigreturn trampolines

kernel/signal32.c compat_setup return()

For more information, have a look at the patch series: [RFC PATCH v2 0/8] arm64: Add a compat vDSO

13/21 Non-Confidential © ARM 2016 ARM

http://www.spinics.net/lists/arm-kernel/msg539060.html

Problems and solutions

14/21

Some redundancy with the [vectors] page

= Remove it (so long, kuser helpers!)

= Move the sigreturn trampolines to [vdso]

The arm64 vDSO is implemented in assembly — cannot be reused
= Reuse and adapt the arm vDSO (modified to share the same data page)

Compiling arm code: we need a 32-bit toolchain!

= Compat vDSO only built if CROSS_COMPILE_ARM32 is set
= Pass a clever mixture of flags to the 32-bit compiler

Kernel support is pointless without support in libc + dynamic linker

= Support added to glibc in 2.22 (August 2015)
= Support added to bionic in July 2016 — but it didn’t make it into Android N ®

Non-Confidential © ARM 2016

ARM

Some figures

vDSO call vs direct syscall, 64-bit and 32-bit

) [M m64/Syscall 8 64/vDSO 0 8 32/Syscall B 8 32/vDSO |
Time (ns)

1,076 1007
1,000 |- 963 4 961 954

500

clock_gettime clock_gettime gettimeofday
MONOTONIC MONOTONIC_ COARSE

15/21 Non-Confidential © ARM 2016

Very simple benchmark, run on Juno
RO with 4.8-rcl + compat vDSO

Using glibc 2.23 compiled for arm

Biggest gain on coarse clocks (very fast
to read — maximal syscall overhead)

Slightly lower gain in 32-bit — probably
because it is not written in assembly ©

ARM

Conclusion

The vDSO: a useful and flexible mechanism

= To avoid the overhead of a syscall, by doing the work in userspace
= To provide any kind of data or code to userspace (e.g. sigreturn trampolines)

= Kernel-side implementation completely arch-specific (in practice, always more or less similar)

= libc + dynamic linker support essentiall
* Proposed addition of a 32-bit vDSO to arm64

= Very relevant for Android and Chrome OS

= Better to have it available in mainline than implemented by each vendor
= Closely linked to the arm vDSO

= Patch series: [RFC PATCH v2 0/8] arm64: Add a compat vDSO

16/21 Non-Confidential © ARM 2016 ARM

http://www.spinics.net/lists/arm-kernel/msg539060.html

Questions

17/21 Non-Confidential © ARM 2016 ARM

Appendices

18/21 Non-Confidential © ARM 2016 ARM

Full benchmarks

vDSO call vs direct syscall, 64-bit and 32-bit

Time (ns)
1,120
1,000 |- 972
500 [
128 ~Ii22
+7.6 —

clock gettime
REALTIME

19/21 Non-Confidential © ARM 2016

1,142

+0.9

1,076 1,068

963 948

143 133
=71

clock gettime
MONOTONIC

clock gettime
MONOTONIC_RAW

| B B 64/Syscall B 64/vDSO 0 B 32/Syscall 0 B 32/vDSO
1,007
974 918 961 954
837
173
. 102 % 135 8 [
. . %75 275 [32
+9.6 +10.2
clock gettime clock gettime gettimeofday
REALTIME_COARSE MONOTONIC_ COARSE

vDSO hacking/debugging

Debugging the vDSO is a bit tricky, due to it being used by default (no easy way to opt out)

Quick hacks to ease debugging:
= Create a shared library with the libc functions you want to override and use LD_PRELOAD

= More global: modify your libc so that it only considers the vDSO if an environment variable is
set

20/21 Non-Confidential © ARM 2016 ARM

vDSO data page ([vvar])

struct vdso_data {
__ub4
__u6b4
__ub4

u64

__u6b4
__ub4

u64

__u6b4
__ub4
. u32
_u32

u32
u32

_u32
_u32

I8

u32

cs_cycle_last;
raw_time_sec;
raw_time_nsec;
xtime_clock_sec;
xtime_clock_nsec;
xtime_coarse_sec;
xtime_coarse_nsec;
wtm_clock_sec;
wtm_clock_nsec;
tb_seq_count;
cs_mono_mult;
cs_shift;
cs_raw_mult;
tz_minuteswest;
tz_dsttime;

use_syscall;

21/21 Non-Confidential © ARM 2016

/*
/*

/*
/*
/*
/*
/*
/*

/*
/*

Timebase at clocksource init */

Raw time */

Kernel time */

Coarse time */

Wall to monotonic time */

Timebase sequence counter */

NTP-adjusted clocksource multiplier */

Clocksource shift (mono = raw)
Raw clocksource multiplier */

Whacky timezone stuff */

*/

ARM

	The vDSO
	What is a vDSO?
	``Virtual'' syscalls
	Why a DSO?

	Implementation and plumbing
	Kernel and userspace setup
	Anatomy of the vDSO on arm64

	Adding a 32-bit vDSO to arm64
	Compat processes and vDSO
	Main parts of the 32-bit vDSO implementation
	Problems and solutions
	Some figures

	Conclusion

