
The vDSO on arm64

Kevin Brodsky
ARM

Linux Plumbers Conference — Android Microconference

November 3, 2016

Non-Confidential © ARM 2016



Outline

The vDSO
What is a vDSO?
“Virtual” syscalls
Why a DSO?

Implementation and plumbing
Kernel and userspace setup
Anatomy of the vDSO on arm64

Adding a 32-bit vDSO to arm64
Compat processes and vDSO
Main parts of the 32-bit vDSO implementation
Problems and solutions
Some figures

Conclusion

2/21 Non-Confidential © ARM 2016



The vDSO

3/21 Non-Confidential © ARM 2016



What is a vDSO?

vDSO: virtual DSO (Dynamic Shared Object)

A full-blown DSO (shared library), provided by the kernel

Mapped by the kernel into all user processes

Linked like a normal .so shared library
The one gdb used to complain about! (warning: Could not load shared library symbols for linux-vdso.so.1)

Mainly meant for providing “syscalls in userspace” (virtual syscalls)

4/21 Non-Confidential © ARM 2016



“Virtual” syscalls

It’s all about speed!

Certain syscalls are fast to process and the syscall itself
(kernel enter/exit) is a significant overhead

Certain syscalls do not require much privilege to process

Not doing a syscall
would be beneficial

Solution: provide some code to userspace that “emulates” the syscall
Possibly using some data made available by the kernel
Outside of the kernel, but strongly tied to it

Typical candidates: time-related syscalls
For instance, a “virtual” gettimeofday() can be up to 10 times faster than the normal syscall!

5/21 Non-Confidential © ARM 2016



Why a DSO?

A significant improvement over the old vsyscall page:

More flexible: no fixed offset within the vDSO

Cleaner: appears like a regular library to userspace
→ improved debugging

Harder to exploit: takes advantage of ASLR

Now included in most major architectures,
deprecating (or completely replacing) the vsyscall page

vsyscall by arch
x86_64 2.5.6 2002 [Initial arch impl.]

i386 2.5.53 2002

vDSO by arch
ppc64 2.6.12 2005

i386 2.6.18 2006

x86_64 2.6.23 2007

mips 2.6.34 2010

arm64 3.7 2012 [Initial arch impl.]

arm 4.1 2015

6/21 Non-Confidential © ARM 2016



Implementation and plumbing

7/21 Non-Confidential © ARM 2016



Kernel and userspace setup

execve()

ELF loader

Dynamic linker

libc init

KERNEL

USERSPACE

Maps vDSO pages (code + data)
Sets AT_SYSINFO_EHDR in the auxiliary vector

Looks up AT_SYSINFO_EHDR in the auxiliary vector
If set, links the vDSO (→ [vdso])

Looks up function symbols (e.g. __vdso_gettimeofday)
in [vdso]

If found, sets global function pointers

8/21 Non-Confidential © ARM 2016



Anatomy of the vDSO on arm64

vdso_data

__kernel_gettimeofday()
__kernel_clock_gettime()
__kernel_clock_getres()
__kernel_rt_sigreturn()

[vvar]

[vdso]

4K page

4K page

AT_SYSINFO_EHDR

KERNELUSERSPACE

9/21 Non-Confidential © ARM 2016



Anatomy of the vDSO on arm64

vdso_data

__kernel_gettimeofday()
__kernel_clock_gettime()
__kernel_clock_getres()
__kernel_rt_sigreturn()

KERNELUSERSPACE

update_vsyscall()

timekeeping_update()

update_vsyscall_tz()

settimeofday()

Read Write

Function call Syscall

gettimeofday()

clock_gettime()

clock_getres()

[signal handler returning]

sys_gettimeofday()

sys_clock_gettime()

sys_clock_getres()

sys_rt_sigreturn()

10/21 Non-Confidential © ARM 2016



Adding a 32-bit vDSO to arm64

11/21 Non-Confidential © ARM 2016



Compat processes and vDSO

COMPAT: running 32-bit processes under a 64-bit kernel
Present on x86, arm64, mips, powerpc, …

Requires dedicated vDSO support
Present on x86, mips, powerpc, … but not arm64
Partly due to arm only having a vDSO since 4.1 (glibc support only added in 2.22)

Why bother about the performance of 32-bit processes on arm64?
Very little use on arm64 servers, but…
Still widespread on Android (apps shipped with 32-bit libraries)
arm64 Chromebooks run a fully 32-bit userspace (for now)
Vendors started implementing their own 32-bit vDSO!

→ There is a need for a 32-bit vDSO on arm64

12/21 Non-Confidential © ARM 2016



Main parts of the 32-bit vDSO implementation

The 32-bit vDSO (userspace library) itself
kernel/vdso32/vgettimeofday.c Time-related syscalls (gettimeofday() and clock_gettime())
kernel/vdso32/sigreturn.S sigreturn trampolines

Install the vDSO mappings in compat user processes (and set mm->context.vdso)
kernel/vdso.c aarch32_setup_additional_pages()

Tell fs/compat_binfmt_elf.c to set AT_SYSINFO_EHDR
include/asm/elf.h COMPAT_ARCH_DLINFO: AT_SYSINFO_EHDR = mm->context.vdso

Use the sigreturn trampolines
kernel/signal32.c compat_setup_return()

For more information, have a look at the patch series: [RFC PATCH v2 0/8] arm64: Add a compat vDSO

13/21 Non-Confidential © ARM 2016

[All paths are relative to arch/arm64]

http://www.spinics.net/lists/arm-kernel/msg539060.html


Problems and solutions

Some redundancy with the [vectors] page
Remove it (so long, kuser helpers!)
Move the sigreturn trampolines to [vdso]

The arm64 vDSO is implemented in assembly→ cannot be reused
Reuse and adapt the arm vDSO (modified to share the same data page)

Compiling arm code: we need a 32-bit toolchain!
Compat vDSO only built if CROSS_COMPILE_ARM32 is set
Pass a clever mixture of flags to the 32-bit compiler

Kernel support is pointless without support in libc + dynamic linker
Support added to glibc in 2.22 (August 2015)
Support added to bionic in July 2016 — but it didn’t make it into Android N ☹

14/21 Non-Confidential © ARM 2016



Some figures

clock_gettime

MONOTONIC

clock_gettime

MONOTONIC_COARSE

gettimeofday
0

500

1,000 963 918 961

143
÷6.7 90

÷10.2
128
÷7.5

1,076
1,007

954

203
÷5.3 135

÷7.5
173
÷5.5

Time (ns)

vDSO call vs direct syscall, 64-bit and 32-bit

64/Syscall 64/vDSO 32/Syscall 32/vDSO
Very simple benchmark, run on Juno
R0 with 4.8-rc1 + compat vDSO

Using glibc 2.23 compiled for arm

Biggest gain on coarse clocks (very fast
to read→ maximal syscall overhead)

Slightly lower gain in 32-bit — probably
because it is not written in assembly 😉

15/21 Non-Confidential © ARM 2016



Conclusion

The vDSO: a useful and flexible mechanism
To avoid the overhead of a syscall, by doing the work in userspace
To provide any kind of data or code to userspace (e.g. sigreturn trampolines)

Kernel-side implementation completely arch-specific (in practice, always more or less similar)

libc + dynamic linker support essential!
Proposed addition of a 32-bit vDSO to arm64

Very relevant for Android and Chrome OS
Better to have it available in mainline than implemented by each vendor
Closely linked to the arm vDSO
Patch series: [RFC PATCH v2 0/8] arm64: Add a compat vDSO

16/21 Non-Confidential © ARM 2016

http://www.spinics.net/lists/arm-kernel/msg539060.html


Questions

17/21 Non-Confidential © ARM 2016



Appendices

18/21 Non-Confidential © ARM 2016



Full benchmarks

clock_gettime

REALTIME

clock_gettime

MONOTONIC

clock_gettime

MONOTONIC_RAW

clock_gettime

REALTIME_COARSE

clock_gettime

MONOTONIC_COARSE

gettimeofday
0

500

1,000 972 963 948
837

918 961

128
÷7.6

143
÷6.7

133
÷7.1 70

÷11.9
90

÷10.2
128
÷7.5

1,120 1,076 1,068
974 1,007

954

182
÷6.2

203
÷5.3

1,142
÷0.9

102
÷9.6

135
÷7.5

173
÷5.5

Time (ns)

vDSO call vs direct syscall, 64-bit and 32-bit

64/Syscall 64/vDSO 32/Syscall 32/vDSO

19/21 Non-Confidential © ARM 2016



vDSO hacking/debugging

Debugging the vDSO is a bit tricky, due to it being used by default (no easy way to opt out)

Quick hacks to ease debugging:

Create a shared library with the libc functions you want to override and use LD_PRELOAD

More global: modify your libc so that it only considers the vDSO if an environment variable is
set

20/21 Non-Confidential © ARM 2016



vDSO data page ([vvar])
struct vdso_data {

__u64 cs_cycle_last ; /* Timebase at clocksource i n i t */
__u64 raw_time_sec ; /* Raw time */
__u64 raw_time_nsec ;
__u64 xtime_clock_sec ; /* Kernel time */
__u64 xtime_clock_nsec ;
__u64 xtime_coarse_sec ; /* Coarse time */
__u64 xtime_coarse_nsec ;
__u64 wtm_clock_sec ; /* Wall to monotonic time */
__u64 wtm_clock_nsec ;
__u32 tb_seq_count ; /* Timebase sequence counter */
__u32 cs_mono_mult ; /* NTP−adjusted clocksource mu l t ip l i e r */
__u32 cs_shift ; /* Clocksource s h i f t (mono = raw ) */
__u32 cs_raw_mult ; /* Raw clocksource mu l t ip l i e r */
__u32 tz_minuteswest ; /* Whacky timezone s tu f f */
__u32 tz_dsttime ;
__u32 use_syscall ;

} ;
21/21 Non-Confidential © ARM 2016


	The vDSO
	What is a vDSO?
	``Virtual'' syscalls
	Why a DSO?

	Implementation and plumbing
	Kernel and userspace setup
	Anatomy of the vDSO on arm64

	Adding a 32-bit vDSO to arm64
	Compat processes and vDSO
	Main parts of the 32-bit vDSO implementation
	Problems and solutions
	Some figures

	Conclusion

